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We present a cellular automata model as a new approach to Bernoulli site 
percolation on the square lattice. A new macroscopic quantity is defined 
and numerically computed at each level step of the automata dynamics. Its 
limit manifests a critical behavior at a value of the site occupancy probability 
quite close to those obtained for site percolation on ~2 with the best-known 
numerical methods. 
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fractal percolation. 

1. I N T R O D U C T I O N  

The concept of cellular automata (CA) was introduced in 1950 (1) by von 
Neumann and Ulam as a system whose main feature was the ability to 
reproduce itself like a living organism. The well-known "game of life" 
proposed by J. Conway illustrates this biological aspect of CA and brought 
a renewal of attention to these models. The interest in the study of these 
complex systems stems from the fact that they demonstrate successful 
applications in natural sciences, in particular in hydrodynamics for various 
models of fluid flows32) In this context, they are called "lattice gas cellular 
automata." In addition they are of great interest in computation theory, 
complexity analysis, and the study of critical phenomena in statistical 
physics. 

Formally, cellular automata are dynamical systems where space, time, 
and state dynamical variables are discrete. Consider a d-dimensional lattice 
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~ ,  whose sites are called cells. XE 77 d is the position of a given cell in 5('. 
Each cell is assigned a state which is an integer from the set {0, 1, 2,..., 
M -  1 }, where M is a natural number indicating the number of states. In 
the important class of "Boolean automata," the state variables belong to 
the set {0, 1 }, in other words, sites are assigned a one-bit variable. 

A neighborhood N of a cell c is a set of cells located at some distance 
6 from c. For example, a v o n  Neumann neighborhood on the square lattice 
77 2 consists of all cells X =  (x, y )~  772 at a distance one from the cell 
Xo=(Xo, Yo), such that X=Xo, ] y - y 0 l = l  or Y=Yo, IX-XoL =1.  
A Moore neighborhood involves the eight cells having one edge or one 
corner in common with the cell c. 

The system evolves in discrete time steps according to a parallel 
dynamics described by a local rule which updates the state of each cell 
according to the state of all other cells in its neighborhood. If x~.) is the 
state variable at time t assigned to the cell at position Xi, j, then in the case 
of a v o n  Neumann neighborhood, the state of this cell at time t + 1 is given 
by 

1 t t t +  t t 
Xi, j = f ( X i - l , j ,  Xi+a,j, Xi, j - 1 ,  Xi, j + l )  

where f is the local updating function (also called transition rule of the 
CA). This synchronous updating defines a global function defined on the 
set of all cell configurations on ~ .  

The long-time behavior of CA dynamics, described by the global func- 
tion, has been investigated by Wolfram, (3) who attempted a classification of 
all possible CA into four classes, today named after him: 

Class I: CA dynamics evolves toward a constant state which is a 
fixed point of the synchronous dynamics. 

Class II: CA dynamics evolves toward periodic configurations. 

Class III: Evolution toward fully chaotic states. 

Class IV: Evolution toward a quiescent state comprising localized 
bounded chaotic states. 

Wolfram also established a well-accepted notation for CA rules. A 
(k, r) rule stands for a k-states linear CA (for which the local rule is linear 
with respect to the states of the cells in the neighborhood N) and r 
represents the number of involved neighbors. As we shall see later, the CA 
considered in this note seems to belong to Wolfram's class I. 

Applications of CA in statistical physics reveal promising aspects and 
at the same time difficult mathematical problems to solve. Equivalence 
between Ising models and directed percolation problems with CA has 
been proven by Domany and Kinzel3 4) In this paper we present a model 
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of CA that seems to be related to the critical behavior of the square site 
percolation problem on 2 2. The next section gives a short account of per- 
colation problems and some recent results in the field. In Section 3 we 
introduce a cellular automaton defined on the square lattice 2 2. Its 
dynamics shows a critical behavior for a value of the site probability which 
seems to be related to the numerically estimated threshold probability for 
site percolation on 2 2. Section 4 is devoted to some remarks. 

2. A S H O R T  R E V I E W  ON P E R C O L A T I O N  

The problem of percolation was posed in 1957 by Broadbent and 
Hammersley (5) in the following terms. We are given a large porous stone 
in a bucket of water: is the center of the stone wetted or not? In other 
words, does the water percolate through the stone? Percolation models 
were also considered in connection with spread of disease through 
populations, e.g., in orchards. 

Typica!ly one formulates a simple stochastic model for such a situation 
which in two dimensions can be described in the following way. Let 
p ~ [0, 1] and consider the square lattice 22. The edges of the lattice are 
assigned at random and independently of each other the probability p of 
being open and the probability 1 - p of being closed. For  the infinite lattice 
22 this assignment is equivalent to removing a fraction 1 - p  of all edges 
at random. Two vertices are called connected if there exists at least one 
path between them consisting solely of open edges. The edges of 22 repre- 
sent the passage ways of the stone and p is the proportion of passages 
which are broad enough (open) to allow water to pass along them. This 
model is known as independent (Bernoulli) edge (or bond) percolation. 
For  a nice general review we refer to Grimmett (6) and the references 
therein. 

For  the independent (Bernoulli) site percolation model on Z 2, we also 
fix a probability p ~ [0, 1 ]. We again turn 7/2 into a graph, denoted by f12, 
by adding edges between all pairs of vertices of 22 which are at distance 
one from each other, i.e., all pairs (xl ,  x2), (Yl, Y2) of vertices of Z 2 such 
that x l = x 2 ,  t y i - y 2 [ = l  or y l = y 2 ,  I x l - x z l = l .  We examine now 
each site of [1_2: with probability p the sites of 22 are occupied, and with 
probability 1 - p  they are vacant. We delete all bonds having a vacant site 
as an endpoint, independently of all other sites. 

For  p = 0 the resulting graph consists only of isolated sites, while setting 
p = 1 yields the whole original graph n_ 2, which consists of one unbounded 
component,  namely itself. If p is small, one sees a lot of isolated clusters, 
each consisting of interconnected occupied sites and surrounded by a sea of 
vacant sites. As p increases, it reaches a critical value Pc above which there 
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appears with positive probability an unbounded component in the resulting 
graph. Physically speaking the question is whether or not there exists a non- 
trivial phase transition with respect to the connectivity properties of the 
system. 

Although the above models are very easy to describe, they prove hard 
to solve. A full mathematical solution is still lacking and presents a great 
challenge. For  independent percolation on 0_ d only one critical value is 
known. Indeed Kesten (7'8) showed that Pcb~ = 1/2. This result is far 
from trivial and such an exact calculation does not exist for the two-dimen- 
sional site problem. The best rigorous available bounds on the site critical 
percolation probability in n_ 2 are 0.543 ~< p~it~ <~ 3/4. The first inequality 
is due to Men'shikov and Pelikh (9) and the second one was already derived 
by Broadbent and Hammersley. (5) These bounds are still far from the 
threshold value obtained by computer simulations, which is around 
0 .59 . (  13-16 ) 

It is well known that every bond model can be reformulated as a site 
model, but that the converse is false. (1~ In other words, site percolation 
models are more general than bond percolation models (see ref. 8, 
Chapter 3). Consider bond percolation on a lattice ~ .  The covering lattice 
Yc of s is defined in the following way. To each edge of s there corre- 
sponds a vertex of ~c and two such vertices are called adjacent in 5~ if and 
only if the corresponding edges of &o have an end vertex in common. 
Therefore it is indeed exactly equivalent to study bond percolation on 5r 
and site percolation on the covering lattice &a c. 

There is also a nice connection between Mandelbrot 's fractal percola- 
tion process (11) and independent site percolation on Z 2. Mandelbrot's 
fractal percolation process can be described as follows. Fix an integer N ~> 2 
and p ~ [0, 1 ]. We divide the unit square [0, 1 ] • [0, 1 ] into N 2 smaller 
squares of size 1/Nx 1IN and each of these subsquares is retained with 
probability p and deleted with probability 1 -  p. Let us call M1 the 
retained set. We now repeat this process in each of the squares of Mx: 
each subsquare of M1 is divided now into N 2 smaller squares of size 
1/N2x 1/N 2 and each of these smaller subsquares is again retained with 
probability p and deleted with probability 1 - p .  The retained set is 
denoted by M 2. After N iterations we obtain the retained set M N and in 
this way a sequence of decreasing random sets M1, M2,..., Mx.  We now 
define M ~  by 

M,= ~ m N (2.1) 
N = I  

and percolation occurs if Moo contains a connected component which 
intersects the bottom and the top of the unit square. The threshold value 
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o f p  is called Pc, N" For N very large the system looks indeed like independ- 
ent site percolation on the square lattice 7/2 if we view the squares as sites 
in 7/2. Mandelbrot (m has proposed the conjecture that 

~ite,--2, (2.2) l i m  pc, N = P c  t/Z_ ) 
N ~ o 9  

This conjecture was proved in 1989 by Chayes and Chayes. (~2~ 
At the percolation transition the cluster distribution is scale invariant, 

as can be demonstrated by comparing a typical configuration at p~ with a 
magnified portion of itself. In this paper we report the results of numerical 
simulations concerning an alternative approach, based on a scaling 
technique to the site percolation problem on 22. A mathematical study of 
the method we propose is deferred to another publication. 

3. THE M O D E L  

For n ~ N, consider an n x n lattice l_, z c Z 2 with free boundary condi- 
tions. For  p s [0, 1] build a site configuration o-(0_ 2) in the following w ay :  
go through all sites (i, j )  ~ ~_] and for each site, put a 1 with probability p 
and a 0 with probability 1 - p, independent of all other sites. 

Call Si the ith line vector of 0--1 digits in a([l_]), S ~  {0, 1} ". For  any 
site configuration o-([1_]), let us define the mean local overlap (see Fig. 1) 

H(n,p)=-~ ~ (S~,Sg+I) 
i = l  

where ( -, �9 ) is the usual scalar product in {0, 1 }"; namely 

(3.1) 

n 

(Si, S,+1) = ~ Si j.Si+I, j S ~ { 0 , 1 }  (3.2) 
j =  i 

It is easy to see t h a t l i m n ~ H ( n , p )  p2, since J J = Si �9 Si+ 1 = 1 if and only if 
S{ = 1 and S~+ 1 = 1, and this event has probability p2 

Actually the function H(n, p) contains information related to the 
bottom-to-top connectivity of occupied sites, but if we want to view 

0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1  
- 1 1  ~ 0 1 1 0 1  0 1 0 1 1 1 0 0 1 0 0  ~ S i + ~  
~ 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 ] 0 1 1  ~ S i 

lO!1OO  o 1 1 o , 1  1 o o l  

Fig. 1. Part  of n x n lattice, with line vectors of sites S i~ {0, 1 }". 
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Fig. 2. Isolated cluster of occupied sites contributing to H(n, p). 

H(n, p) as an appropriate quantity describing the critical behavior of the 
cluster size distribution near Pc, it counts too much? For  example, the 
configuration of Fig. 2 will contribute to H(n, p) though it will not 
contribute to long-range percolation. 

The idea we propose is to rescale a ( [  2) in order to retain only the 
information related with long-range percolation, and get rid of patterns like 
the one in Fig. 2. 

We consider 2 x 2 cells on the grid. The following Boolean automaton 
rule has been applied since it preserves locally (i.e., on the level of the 
elementary cells) the connectivity from bot tom to top: 

r  ~')] ( 3 3 )  ( sJ )  ( t + l ) =  [ ( S J )  (t) A (SJ+ l )  (t)'] v [-(StJ.+l) (t) A ,  i+1 

In this way each elementary 2 x 2 cell is replaced by a new "supersite," 
which represents the mean (in the sense of our rule) of the four initial sites. 

A distinguished feature here is that the automaton rule is applied with 
overlapping cells all over the lattice with free boundary conditions as seen 
in Fig. 3. 

The procedure has been simulated on a CM2 connection machine for 
a 4096 x 4096 lattice and thousands of time steps of synchronous auto- 
maton dynamics starting from a randomly chosen initial configuration with 

1 1 0 1 0 0 1 1 0 1 0 0 0 1 

0 0 1 0 1 1 1 0 0 1 0 1 1 0 

i 0 " " i -  1 0 0 1 0 0 1 0 1 0 0 1 

1 1 0 1 1 0 1 1 0 0 0 1 0 1 

Fig. 3. Cells neighborhood considered in this automaton rule. The updated cell is the bottom 
leftmost cell of each 2 • 2 cell pattern. 
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Fig. 4. H(n, p) as a function o fp  on a square site lattice with linear size n = 4096 for different 
timesteps of the synchronous dynamics. 

Fig. 5. 
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Limiting behavior of the "S-like" shape of /7(n, p) showing a transition close to 
p = 0.593. 
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a given initial site probability p. From accurate statistics on the limiting 
behavior of CA dynamics, we find that H(n, p) shows a sharp transition in 
the topological structure of the random lattice at Po = 0.593_ 0.001. 

Figure 4 shows the evolution of II(n, p) as a function o fp  for n = 4096 
and several steps of dynamics and Fig. 5 shows the corresponding limiting 
behavior. 

Gebele (15) has found the following numerical estimate for the critical 
probability for site percolation on Z2: Pc = 0.5927 _+ 0.00005. Derrida and 
Saleur (16) showed by using Monte Carlo and transfer matrix methods that 
Pc = 0.592 +_ 0.0015. 

We want to point out that one does not need to consider large cell 
neighborhoods in order to get close to the estimated value of Pc, as done 
in ref. 13, for example. There, in order to get close enough to Pc, the 
elementary cell size had to be increased by factors up to few hundred. 

4. F I N A L  R E M A R K S  

Let us briefly discuss our future plans and point out some open 
questions that have not been discussed in this paper but appear to us as 
quite interesting. 

1. Numerics: We intend to perform larger and more accurate 
numerical computations in order to refine our estimate of P0. 

2. Theory: The question of how the automaton rule acts in the 
large is far from being trivial: 

(a) There exist locally percolating patterns (k x k patterns showing a 
crossing of 1 from bottom to top) that are distroyed by the rule ( k - 1  
automaton steps acting on this original pattern end with a 0 supersite) 
(Fig. 6). 

(b) The reverse is also true; there exist locally nonpercolating 
patterns giving rise to an occupied 1 supersite. 

0 0 0 1 
1 1 1 1 
1 0 0 0 
1 0 0 0 

0 0 1  
l O 0  
1 0 0 

Fig. 6. Example showing that the automaton rule may violates locally the connectedness of 
occupied clusters. 
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Nevertheless, the results of the computer simulations seem to indicate 
that in the limit, the pathological configurations do not contribute to the 
function H(n, p) controlling the mean overlap. 

Indeed, numerical experiments made on small (k x k) cells show that 
these events have indeed negligible weight (for k = 4 or 5 the fraction of 
these events is about 10 -3 when compared to locally percolating patterns 
giving 1 after application of the global automaton dynamics). 

One way to prove that our model gives the correct answer to the 
problem of site percolation on Z 2 would be to connect it to a fractal per- 
colation problem as defined in ref. 11 and investigated in refs. 12 and 17, 
for example, and to show that the two problems are in some sense 
probabilistically equivalent to each other. 

The hard part comes from the fact that the rule being used does not 
leave invariant an important class of events (increasing events) on a(~_2~), 
for which there exist many useful results to work with (Har r i s -FKG and 
BK inequalities, Russo's formula, etc.(6'8)). 
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